Applied Mathematics and Modeling for Chemical Engineers

Richard G. Rice

Duong D. Do
University of Queensland
St. Lucia, Queensland, Australia

John Wiley & Sons, Inc.

Cliff Robichaud Acquisitions Editor Marketing Manager Susan J. Elbe Senior Production Editor Savoula Amanatidis Pedro A. Noa Designer Cover Designer Ben Arrington Manufacturing Manager Lori Bulwin Illustration Coordinator

Recognizing the importance of preserving what has been written, it is a policy of John Wiley & Sons, Inc. to have books of enduring value published in the United States printed on acid-free paper, and we exert our best efforts to that end.

Eugene P. Aiello

Convright @ 1995 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030. (201) 748-6011, fax (201) 748-6008, E-Mail: PERMREQ@WILEY.COM.

To order books or for customer service please, call 1(800)-CALL-WILEY (225-5945).

Library of Congress Cataloging-in-Publication Data

Rice, Richard G.

Applied mathematics and modeling for chemical engineers / Richard G. Rice. Duong D. Do.

cm.—(Wiley series in chemical engineering) Includes bibliographical references and index. ISBN 0-471-30377-1

1. Differential equations. 2. Chemical processes—Mathematical models. 3. Chemical engineering-Mathematics. 1. Duong, D. Do. II. Title. III. Series. QA371.R37 1994 660'.2842'015118--dc20 94-5245

CIP

: راپس. ريڄارد جي. Rice, Richard G. Applied mathematics and modeling for chemical engineers / . عنوان و نامپدید آور Richard G. Rice, Duong D. Do. : تهران : آبيز، ١٣٩٠-٢٠١١م، مشخصات نشر ، ۷۲۰ ص.، مصور، جدول، تمودار، مشخصات ظاهري وضعيت فهرستنوي بادداشت : افست از روی جاپ ۱۹۹۵: کانادا بادداشت ، ابلاید متمتیکز... أوانويسي عنوان ، شیمی -- فرایندها -- الگوهای ریاضی موضوع : معادلههای دیفرانسیل موشوع ؛ مهندسی شیمی -- ریاضیات : دونگ، دی. دو Duong, D. Do : : ۱۳۹۰ ۲الف ۲ر/QATY۱ 99-17AFT-1011A:

Applied Mathematics and Modeling for Chemical Engineers علاب •

Richard G. Rice - Duong D. Do

ئاشر آييڙ - ا

ی قطع وزیری ی نوبت اول

🗨 تاریخ تابستان ۱۳۹۰

• تیراژ ۲۰۰۰

• صفحات ۲۲۰

قیمت ۲۵۰۰۰ تومان

مراكز پخش

کتابیران: تهران، میدان انقلاب، ابتدای خیابان آزادی، خیابان دکتر قریب، بعد از فرصت شیرازی، یالک ۷، تلفن: ۱۸ – ۶۶۵۶۶۵۰۹

نو پردازان: تهران، خیابان لبانی نژاد، بین اردیبهشت و فروردین، پلاک ۲۳۸. تلفن: ۶۶۴۱۴۲۷۹ - ۶۶۴۱۲۵۱۵ - ۶۶۴۱۱۷۷۳ - ۴۶۴۱۱۱۷۳

Wiley Series In Chemical Engineering

Bird, Armstrong, and Hassager: Dynamics of Polymeric Liquids, Vol. 1 Fluid Mechanics

Bird, Hassager, Armstrong, and Curtiss: Dynamics of Polymeric Liquids, Vol. II Kinetic Theory

Bird, Stewart, and Lightfoot: Transport Phenomena

Brownell and Young: Process Equipment Design: Vessel Design

Felder and Rousseau: Elementary Principles of Chemical Processes, 2nd Edition

Franks: Modeling and Simulation in Chemical Engineering

Froment and Bischoff: Chemical Reactor Analysis and Design

Henley and Seader: Equilibrium—Stage Separation Operations in Chemical Engineering

Hill: An Introduction to Chemical Engineering Kinetics and Reactor Design

Jawad and Farr: Structural Analysis and Design of Process Equipment

Levenspiel: Chemical Reaction Engineering, 2nd Edition

Reklaitis: Introduction to Material and Energy Balances

Rice and Do: Applied Mathematics and Modeling for Chemical Engineers

Sandler: Chemical and Engineering Thermodynamics

Smith and Corripio: Principles and Practice of Automatic Process Control

Smith and Missen: Chemical Reaction Equilibrium Analysis

Ulrich: A Guide to Chemical Engineering Process Design and Economics

Welty, Wicks, and Wilson: Fundamentals of Momentum, Heat, and Mass Transfer, 3rd Edition

Preface

The revolution created in 1960 by the publication and widespread adoption of the textbook *Transport Phenomena* by Bird et al. ushered in a new era for chemical engineering. This book has nurtured several generations on the importance of problem formulation by elementary differential balances. Modeling (or idealization) of processes has now become standard operating procedure, but, unfortunately, the sophistication of the modeling exercise has not been matched by textbooks on the solution of such models in quantitative mathematical terms. Moreover, the widespread availability of computer software packages has weakened the generational skills in classical analysis.

The purpose of this book is to attempt to bridge the gap between classical analysis and modern applications. Thus, emphasis is directed in Chapter 1 to the proper representation of a physicochemical situation into correct mathematical language. It is important to recognize that if a problem is incorrectly posed in the first instance, then any solution will do. The thought process of "idealizing," or approximating an actual situation, is now commonly called "modeling." Such models of natural and man-made processes can only be fully accepted if they fit the reality of experiment. We try to give emphasis to this well-known truth by selecting literature examples, which sustain experimental verification.

Following the model building stage, we introduce classical methods in Chapters 2 and 3 for solving ordinary differential equations (ODE), adding new material in Chapter 6 on approximate solution methods, which include perturbation techniques and elementary numerical solutions. This seems altogether appropriate, since most models are approximate in the first instance. Finally, because of the propensity of staged processing in chemical engineering, we introduce analytical methods to deal with important classes of finite-difference equations in Chapter 5.

In Chapters 7 to 12 we deal with numerical solution methods, and partial differential equations (PDE) are presented. Classical techniques, such as combination of variables and separation of variables, are covered in detail. This is followed by Chapter 11 on PDE transform methods, culminating in the generalized Sturm-Liouville transform. This allows sets of PDEs to be solved as handily as algebraic sets. Approximate and numerical methods close out the treatment of PDEs in Chapter 12.

This book is designed for teaching. It meets the needs of a modern undergraduate curriculum, but it can also be used for first year graduate students. The homework problems are ranked by numerical subscript or an asterisk. Thus, subscript 1 denotes mainly computational problems, whereas subscripts 2 and 3 require more synthesis and analysis. Problems with an asterisk are the most difficult and are suited for graduate students. Chapters 1 through 6 comprise a suitable package for a one-semester, junior level course (3 credit hours). Chapters 7 to 12 can be taught as a one-semester course for advanced senior or graduate level students.

Academics find increasingly less time to write textbooks, owing to demands on the research front. RGR is most grateful for the generous support from the faculty of the Technical University of Denmark (Lyngby), notably Aa. Fredenslund and K. Ostergaard, for their efforts in making sabbatical leave there in 1991 so successful, and extends a special note of thanks to M. Michelson for his thoughtful reviews of the manuscript and for critical discussions on the subject matter. He also acknowledges the influence of colleagues at all the universities where he took residence for short and lengthy periods including: University of Calgary, Canada; University of Queensland, Australia; University of Missouri, Columbia; University of Wisconsin, Madison; and of course Louisiana State University, Baton Rouge.

Richard G. Rice Louisiana State University September 1994

Duong D. Do University of Queensland September 1994

Contents

Chapter 1 For	mulation of Physicochemical Problems	3
1.1	Introduction	3
1.2	Illustration of the Formulation Process (Cooling of Fluids)	4
1.3		10
	Combining Rate and Equilibrium Concepts (Packed Bed Adsorber)	13
1.4	Boundary Conditions and Sign Conventions	16
1.5	Summary of the Model Building Process	17
1.6	Model Hierarchy and Its Importance in Analysis	28
1.7	References	
1.8	Problems	28
Chapter 2 Sol	ution Techniques for Models Yielding Ordinary	
Dif	ferential Equations (ODE)	37
2.1	Geometric Basis and Functionality	37
2.2	Classification of ODE	39
2.3	First Order Equations	39
2.3	2.3.1 Exact Solutions	41
	2.3.2 Equations Composed of Homogeneous Functions	43
	2.3.3 Bernoulli's Equation	45
	2.3.4 Riccati's Equation	45
	2.3.5 Linear Coefficients	49
	2.3.6 First Order Equations of Second Degree	50
2.4	Solution Methods for Second Order Nonlinear Equations	51
	2.4.1 Derivative Substitution Method	52
	2.4.2 Homogeneous Function Method	58
2.5	Linear Equations of Higher Order	61
	2.5.1 Second Order Unforced Equations:	
	Complementary Solutions	63
	2.5.2 Particular Solution Methods for Forced Equations	72
	2.5.3 Summary of Particular Solution Methods	88
2.6	Coupled Simultaneous ODE	89
2.7	Summary of Solution Methods for ODE	96
2.8	References	97
2.9	Problems	97
_		

x Contents

Chapter 3	Series Solution Methods and Special Functions	104
3.	1 Introduction to Series Methods	104
3.	2 Properties of Infinite Series	106
3.		108
	3.3.1 Indicial Equation and Recurrence Relation	109
3.	4 Summary of the Frobenius Method	126
3.	5 Special Functions	127
	3.5.1 Bessel's Equation	128
	3.5.2 Modified Bessel's Equation	130
	3.5.3 Generalized Bessel Equation	131
	3.5.4 Properties of Bessel Functions	135
	3.5.5 Differential, Integral and Recurrence Relations	137
	.6 References	141
3	.7 Problems	142
Chapter 4	Integral Functions	148
4	.1 Introduction	148
4	.2 The Error Function	148
	4.2.1 Properties of Error Function	149
4	.3 The Gamma and Beta Functions	150
	4.3.1 The Gamma Function	150
	4.3.2 The Beta Function	152
4	.4 The Elliptic Integrals	152
4	.5 The Exponential and Trigonometric Integrals	156
	.6 References	158
4	.7 Problems	158
Chapter 5	Staged-Process Models: The Calculus of Finite Differences	164
5	.1 Introduction	164
	5.1.1 Modeling Multiple Stages	165
5	.2 Solution Methods for Linear Finite Difference Equations	166
	5.2.1 Complementary Solutions	167
5	.3 Particular Solution Methods	172
	5.3.1 Method of Undetermined Coefficients	172
	5.3.2 Inverse Operator Method	174
	.4 Nonlinear Equations (Riccati Equation)	176
	.5 References	179
5	.6 Problems	179
Chapter 6	Approximate Solution Methods for ODE: Perturbation Methods	184
6	.1 Perturbation Methods	184
	6.1.1 Introduction	184
6	.2 The Basic Concepts	189
	6.2.1 Gauge Functions	189
	6.2.2 Order Symbols	190
	6.2.3 Asymptotic Expansions and Sequences	191
	6.2.4 Sources of Nonuniformity	193

		Со	ntents	Xi
	6.3	The Method of Matched Asymptotic Expansion		195
	***	6.3.1 Matched Asymptotic Expansions for Coupled Equations	3	202
	6.4	References		207
	6.5	Problems		208
	0.5	Toolens		
Chapter '	7 Nu	merical Solution Methods (Initial Value Problems)		225
	7.1	Introduction		225
	7.2	Type of Method .		230
	7.3	Stability		232
	7.4	Stiffness		243
	7.5	Interpolation and Quadrature		246
	7.6	Explicit Integration Methods		249
	7.7	Implicit Integration Methods		252
	7.8	Predictor-Corrector Methods and Runge-Kutta Methods		253
		7.8.1 Predictor-Corrector Methods		253
		7.8.2 Runge-Kutta Methods		254
	7.9	Extrapolation		258
	7.10	Step Size Control		258
	7.11	Higher Order Integration Methods		260
	7.12	References		260
	7.13	Problems		261
Chanter	R An	proximate Methods for Boundary Value Problems:		
Спарис		eighted Residuals		268
				260
	8.1	The Method of Weighted Residuals		268
		8.1.1 Variations on a Theme of Weighted Residuals		271 285
	8.2	Jacobi Polynomials		285
		8.2.1 Rodrigues Formula		286
	0.2	8.2.2 Orthogonality Conditions Lagrange Interpolation Polynomials		289
	8.3 8.4	Orthogonal Collocation Method		290
	0.4	8.4.1 Differentiation of a Lagrange Interpolation Polynomial		291
		8.4.2 Gauss-Jacobi Quadrature		293
		8.4.3 Radau and Lobatto Quadrature		295
	8.5	Linear Boundary Value Problem—		
	V.5	Dirichlet Boundary Condition		296
	8.6	Linear Boundary Value Problem		
	0.0	Robin Boundary Condition		301
	8.7	Nonlinear Boundary Value Problem—		
	0.7	Dirichlet Boundary Condition		304
	8.8	One-Point Collocation		309
	8.9	Summary of Collocation Methods		311
	8.10	Concluding Remarks		313
	8.11	References		313
	R 12	Problems		314

xii Contents

Chapter 9	Int	roduction to Complex Variables and Laplace Transforms	331
9	9.1	Introduction	331
•	9.2	Elements of Complex Variables	332
•	9.3	Elementary Functions of Complex Variables	334
•	9.4	Multivalued Functions	335
•	9.5	Continuity Properties for Complex Variables: Analyticity	337
		9.5.1 Exploiting Singularities	341
	9.6	Integration: Cauchy's Theorem	341
	9.7	Cauchy's Theory of Residues	345
		9.7.1 Practical Evaluation of Residues	347
		9.7.2 Residues at Multiple Poles	349
	9.8	Inversion of Laplace Transforms by Contour Integration	350
		9.8.1 Summary of Inversion Theorem for Pole Singularities	353
	9.9	Laplace Transformations: Building Blocks	354
		9.9.1 Taking the Transform	354
		9.9.2 Transforms of Derivatives and Integrals	357
		9.9.3 The Shifting Theorem	360
		9.9.4 Transform of Distribution Functions	361
	9.10	Practical Inversion Methods	363
		9.10.1 Partial Fractions	363
		9.10.2 Convolution Theorem	366
	9.11	Applications of Laplace Transforms for Solutions of ODE	368
	9.12	Inversion Theory for Multivalued Functions:	
		The Second Bromwich Path	378
		9.12.1 Inversion when Poles and Branch Points Exist	382
	9.13	Numerical Inversion Techniques	383
		9.13.1 The Zakian Method	383
		9.13.2 The Fourier Series Approximation	388
	9.14	References	390
	9.15	Problems	390
Chapter 1	0 S	olution Techniques for Models Producing PDEs	397
	10.1	Introduction	397
		10.1.1 Classification and Characteristics of Linear Equations	402
	10.2	Particular Solutions for PDEs	405
		10.2.1 Boundary and Initial Conditions	406
	10.3	Combination of Variables Method	409
	10.4	Separation of Variables Method	420
		10.4.1 Coated Wall Reactor	421
	10.5	Orthogonal Functions and Sturm-Liouville Conditions	426
		10.5.1 The Sturm-Liouville Equation	426
	10.6	Inhomogeneous Equations	434
	10.7	Applications of Laplace Transforms for Solutions of PDEs	443
	10.8	References	454
	10.9	Problems	455

Contents	xiii

Chapter 11	Fransform Methods for Linear PDEs	486
11.1	Introduction	486
11.2	Transforms in Finite Domain: Sturm-Liouville Transforms	487
	11.2.1 Development of Integral Transform Pairs	487
	11.2.2 The Eigenvalue Problem and the Orthogonality	
	Condition	494
	11.2.3 Inhomogeneous Boundary Conditions	504
	11.2.4 Inhomogeneous Equations	511
	11.2.5 Time-Dependent Boundary Conditions	513
-	11.2.6 Elliptic Partial Differential Equations	516
11.3	Generalized Sturm-Liouville Integral Transform	521
	11.3.1 Introduction	521
	11.3.2 The Batch Adsorber Problem	521
11.4		537
11.5	Problems	538
Chapter 12	Approximate and Numerical Solution Methods for PDEs	546
12.1	Polynomial Approximation	546
12.2		562
12.3	Finite Difference	572
	12.3.1 Notations	573
	12.3.2 Essence of the Method	574
	12.3.3 Tridiagonal Matrix and the Thomas Algorithm	576
	12.3.4 Linear Parabolic Partial Differential Equations	578
	12.3.5 Nonlinear Parabolic Partial Differential Equations	586
	12.3.6 Elliptic Equations	588
12.4	Orthogonal Collocation for Solving PDEs	592
	12.4.1 Elliptic PDE	592
	12.4.2 Parabolic PDE: Example 1	598
10.5	12.4.3 Coupled Parabolic PDE: Example 2	600
12.5	Orthogonal Collocation on Finite Elements	603
12.6	References	615 616
12.7	Problems	
Appendix A:	Review of Methods for Nonlinear Algebraic Equations	630
A.1	The Bisection Algorithm	630
A.2	The Successive Substitution Method	632
A.3	The Newton-Raphson Method	635
A.4	Rate of Convergence	639
A.5	Multiplicity	641
A.6	Accelerating Convergence	642
A.7	References	643
	Vectors and Matrices	644
B.1	Matrix Definition	644
B.2	Types of Matrices	646
B.3	Matrix Algebra	647

xiv Contents

B.4	Useful Row Operations	649
B.5	Direct Elimination Methods	651
	B.5.1 Basic Procedure	651
	B.5.2 Augmented Matrix	652
	B.5.3 Pivoting	654
	B.5.4 Scaling	655
	B.5.5 Gauss Elimination	656
	B.5.6 Gauss-Jordan Elimination	656
	B.5.7 LU Decomposition	658
B.6	Iterative Methods	659
	B.6.1 Jacobi Method	659
	B.6.2 Gauss-Seidel Iteration Method	660
	B.6.3 Successive Overrelaxation Method	660
B.7	Eigenproblems	660
B.8	Coupled Linear Differential Equations	661
B.9	References	662
Appendix C:	Derivation of the Fourier-Mellin Inversion Theorem	663
Appendix D:	Table of Laplace Transforms	671
Appendix D: Appendix E:	Table of Laplace Transforms Numerical Integration	671 676
Appendix E:	Numerical Integration	676
Appendix E:	Numerical Integration Basic Idea of Numerical Integration	676 676
Appendix E: E.1 E.2	Numerical Integration Basic Idea of Numerical Integration Newton Forward Difference Polynomial	676 676 677
Appendix E: E.1 E.2	Numerical Integration Basic Idea of Numerical Integration Newton Forward Difference Polynomial Basic Integration Procedure E.3.1 Trapezoid Rule E.3.2 Simpson's Rule	676 676 677 678
Appendix E: E.1 E.2 E.3	Numerical Integration Basic Idea of Numerical Integration Newton Forward Difference Polynomial Basic Integration Procedure E.3.1 Trapezoid Rule E.3.2 Simpson's Rule Error Control and Extrapolation	676 676 677 678 678
Appendix E: E.1 E.2 E.3 E.4 E.5	Numerical Integration Basic Idea of Numerical Integration Newton Forward Difference Polynomial Basic Integration Procedure E.3.1 Trapezoid Rule E.3.2 Simpson's Rule Error Control and Extrapolation Gaussian Quadrature	676 676 677 678 678 680
Appendix E:	Numerical Integration Basic Idea of Numerical Integration Newton Forward Difference Polynomial Basic Integration Procedure E.3.1 Trapezoid Rule E.3.2 Simpson's Rule Error Control and Extrapolation Gaussian Quadrature Radau Quadrature	676 676 677 678 678 680 682 683
Appendix E: E.1 E.2 E.3 E.4 E.5 E.6 E.7	Numerical Integration Basic Idea of Numerical Integration Newton Forward Difference Polynomial Basic Integration Procedure E.3.1 Trapezoid Rule E.3.2 Simpson's Rule Error Control and Extrapolation Gaussian Quadrature Radau Quadrature Lobatto Quadrature	676 676 677 678 678 680 682 683 687 690
E.1 E.2 E.3 E.4 E.5 E.6 E.7 E.8	Numerical Integration Basic Idea of Numerical Integration Newton Forward Difference Polynomial Basic Integration Procedure E.3.1 Trapezoid Rule E.3.2 Simpson's Rule Error Control and Extrapolation Gaussian Quadrature Radau Quadrature Lobatto Quadrature Concluding Remarks	676 676 677 678 678 680 682 683 687 690 693
Appendix E: E.1 E.2 E.3 E.4 E.5 E.6 E.7	Numerical Integration Basic Idea of Numerical Integration Newton Forward Difference Polynomial Basic Integration Procedure E.3.1 Trapezoid Rule E.3.2 Simpson's Rule Error Control and Extrapolation Gaussian Quadrature Radau Quadrature Lobatto Quadrature	676 676 677 678 678 680 682 683 687 690
E.1 E.2 E.3 E.4 E.5 E.6 E.7 E.8	Numerical Integration Basic Idea of Numerical Integration Newton Forward Difference Polynomial Basic Integration Procedure E.3.1 Trapezoid Rule E.3.2 Simpson's Rule Error Control and Extrapolation Gaussian Quadrature Radau Quadrature Lobatto Quadrature Concluding Remarks References	676 676 677 678 678 680 682 683 687 690 693
E.1 E.2 E.3 E.4 E.5 E.6 E.7 E.8 E.9	Numerical Integration Basic Idea of Numerical Integration Newton Forward Difference Polynomial Basic Integration Procedure E.3.1 Trapezoid Rule E.3.2 Simpson's Rule Error Control and Extrapolation Gaussian Quadrature Radau Quadrature Lobatto Quadrature Concluding Remarks References	676 676 677 678 678 680 682 683 687 690 693