GLOSSARY OF NANOTECHE LOGY

By:

Professor-Dr Azim Akbarzadeh

(An ember of the Iran's Nanotechnology Network,
In the ber of Strategic and secretary of Nanotechnology
words)

Ali Farhangi

Donya Poy

July 2015

Title and authors: Glossary of Nanotechnology/ By Azim

Akbarzadeh, Ali Farhangi, Donya Poy

printed by: Azim Akbarzadeh, Tehran, 2015

Page No: 845

ISNB: 978-600-04-3694-0

Cataloging: Fipa

Dewey Classification: 620/503

Congress Classification: T174/7/58. 1394

National bibliography numbers: 983/65

Glossary of Nanotechallo, y

Authors: Azim ak x adeh, Ali Farhangi, Donya Poy

the date of put 'ish . July 2015

The impaint Alim Akbarzadeh, Tehran, Iran

Cover design and layout the book: Donya Poy

Circulation: 500 copies

Fee: 1.000.000 Rials

Foreword xiii Glossary Symbols 7 The Glossary A-Z 13-42

Foreword

Nanotechnology is science, engineering, and new technology conducted at the nanoscale, which is about 1 to 100 nanometers. In fact , nanotechnology ("nancech") is manipulation of matter on an atomic, me'ecu'ar, and supramolecular scale. It's hard to imagine just how small nanotechnology is. One nanometer is a b. 'iont' of a meter, or 10-9 of a meter. Nanoscience and na noteconology involve the ability to see and to control indiv. Juan atoms and molecules. Everything on Earth is mad v p (f atoms—the food we eat, the clothes we wear, the wildings and houses we live in, and our own bodies Although modern nanoscience and nanotechnology victuite new, nanoscale materials were used for centuries Touly's scientists and engineers are finding a wide vrie v of ways to deliberately make materials at the na. . °c. le to take advantage of their enhanced properties such as ... her strength, lighter weight, increased control of light spectrum, and greater chemical reactivity than their largerscale counterparts.

Then, Since nanotechnology is a new interdisciplinary field in the world, those interested in this series are still not familiar with the terminology and its content. Because, nanotechnology terminology in all countries, especially in our country, Iran, use alike for scientists and researchers, we decided to collect a series of nano terms in the form of a comprehensive encyclopedia or glossary. We want to translate this collection into Farsi in the near future. We hope this unique collection for all fans of the series, will be useful. Because each set is collected, is not but free this collection definitely will not be bug-free. Because each set is collected, is not bug-free, this collection definitely will not be bug-free. So, dear readers, we request you to improve the next edition, Notify us of your same stions and criticisms.

Donya Poy d.poy2012@yahoo.com

Symbols

<u> </u>	
ΔE	E the ΔE effect, defined as the fractional difference
N. SERVING VIII	between Em and Em
Δf	resonant frequency shift
Δm	variation of mass
ΔV	volume of the liquid trapped in the ferroma ,netic
	glass surface
Δx	change of magnetic susceptibility
ΔE	change of applied strain
μ	magnetic permeability
μ 0	magnetic permeability in vac_m
μm	magnetic moment
μ_r	relative magnetic permy, hilit
μ_t	transverse permeability of the ferromagnetic glass
	ribbon
μθ	circumferei. 'al erm. 'aity of the ferromagnetic
	glass wire
а	radius of the ferre nagnetic glass wire
a	The normalized column separation as determined by
	Taix's tyle.
Br	remane e
Bs	nation induction
\boldsymbol{C}	Curie constant
đ	thickness of the ferromagnetic glass ribbon
73	electric flux density
4.	The "average" separation of randomly grown GLAD
	columns.
Ec	Young's modulus of the ferromagnetic glass coating
	at a constant applied field
Eex	exchange energy
Eн, Es	Young's modulus of the ferromagnetic glass ribbon at
40011935	a constant applied field.
Ем	Young's modulus of the ferromagnetic glass ribbon at
	a constant magnetization
F	figure of merit
fn	nth harmonic resonant frequency of a vibrating

	ferromagnetic glass sensor
f_t	resonant frequency of a ferromagnetic glass ribbon
•	after applying a thin coating
GMI%	giant magnetoimpedance ratio
Н,	applied magnetic field
Happl	
Hc	coercive force
Hd	demagnetizing field
Hi	internal magnetic field
Hk	anisotropy field
Hmax	saturation magnetic field
I	electric current
j	complex number
J_c	conduction current
Jex	exchange integral
k	effective magnetoelastic coupling
K	anisotropy constant
kв	Boltzmann constant
Ku	anisotropy energy
L	length of the ferromagnetic g'ass lensor
М	magnetization
m ₀	mass of the ferromagne ic rlass sensor
Ms	saturation magnetization
mt	mass of the ferroma metic glass sensor after applying
	a thin coating
N, Na	demagnetize tio. tector
p	The perical or seed elements used to grow periodic
	GLAD str. ctu. 3s.
p	Thin Jim Casity.
рc	And t chamber pressure. For evaporation, pc is
P	les han 10-5Torr (10-3Pa) and typically on theorder
	of 10-6 Torr (10-4 Pa) for refractory metals. For
	sputtering, is on the order of 10-3 to 10-2 Torr (0.1 to
	1.0 Pa).
рc	density of the coating material of the ferromagnetic
P	glass sensor
рe	electrical resistivity
pe pes	surface charge density
15000000	liquid density
рı	ilquiu delisity

рm	Coulomb magnetic moment
p s	density of the ferromagnetic glass sensor
qe	electric charge
Qm	Coulomb magnetic pole strength
Rdc	dc electrical resistance
S	electron spin
S	The diameter of columns grown using the GLAD technique.
ß	Columnar angle measured relative to the substrate normal.
t	The thickness (i.e., height) of individual see.
	elements used to grow periodic
	GLAD structures. This parameter, coupled with the
	flux incidence angle, helps
	determine the optimal seed perioa.
T	temperature, torque
T	Substrate or film surface remajer rure.
T_c	crystallization tempe wire
Tm	Melting temperatur c'sc irce material.
$T\theta$	Curie tempo atu e
Ua	anisotropy ene.
Uel	elastic energy
Uml	magnethel, stic nergy
Ux	displacement of a vibrating ferromagnetic glass sensor
V	ve. icity
V, V1, V2	a ured voltage across the length of the
EREALESTEEN VIOLE	fe tromagnetic glass sensor
TW.	width of the ferromagnetic glass ribbon
A TEST	magnetic susceptibility
	magnetic susceptibility of a ferromagnetic glass sensor at zero applied stress
Z	electrical impedance
α	directional cosines of magnetization
а	The angle of incident flux at the substrate measured relative to the substrate normal.
α	directional cosines of magnetization
γ	Weiss constant
δ	domain wall thickness:

	periodic GLAD structures. At this period, film growth occurs only at the locations of seed elements. In other
	words, $\delta \equiv p$ optimized.
Δα	A measure of the angular distribution in flux incident at the substrate.
3	magnetostrictive strain
ηι	liquid viscosity
λs	magnetostriction constant
σ	applied stress
σ_p	Poisson's ratio
φ	Rotation angle about an axis located at the substrate center, and parallel to its normal.
χc	Columnar angle measured relative to the sucstrat plane.
χv	The angle of incident flux measured relative to the substrate plane.
ω	radian frequency