Brief Insight Halophilic Proteins Adaptation and their Biotechnological Potentials

Hossein Javid Ph.D.,

Microbiologist

van Institute of Reproductive Biomedicine

ACECR, Tehran-Iran

Mohabbat Ahmadi M.Sc., Physiologist Shiraz University سرشناسه: جاوید، حسین، ۱۳۵۹-

عنوان: Brief Insight Halophilic Proteins Adaptation and their Biotechnological Potentials

نام پدید آور: Hossein Javid/Mohabbat Ahmadi

مشخصات نشر: شيراز، شهد سخن، ١٣٩٥ =٢٠١٧ م.

مشخصات ظاهری: ۶۲ ص .: مصور (بخشی رنگی)، جدول، نمودار

شابک: ۲۰۰۰۰ / ۹۷۸-۶۰۰-۶۸۸۴-۴۲-۴ ریال

وضعيت فهرست نويسي: فييا

یاداشت: انگلیسی

یاداشت: کتابنامه

آوانویسی عنوان: بریف انیسایت ...

موضوع: پروتئين

موضوع: Proteins

موضوع: پروتئین های باکتریایی

موضوع: Bacterial Proteins

م ضوح کیط های توانفرسا - میکروب شناسی

موصوع Extreme Environments-Microbiology

شنا مد افز ده: احمدی، محبت، ۱۳۵۹-

شن ب خرود : Ahmadi, Mohal hat

رده بندی ک کره. ۱۳۱ ۴ ب ۲ ج/ QP م

رده بذای دیویی ۵۷۲۱۶

شماره کتابشناسی له ۲۶۰۸۷۸۲

نوبت چاپ: اول سال چاپ: ۱۳۹۵ تیراژ: ۱۰۰۰ صفحه آرایی: شهد سخن چاپ و صحافی: ولیعصر قیمت: ۲۰۰۰۰ ریال

حق چاپ برای مؤلفین محفوظ می باشد انتشارات شهد سخن شیراز - فلکه هنگ همراه: ۹۱۷۷۰۲۰۵۲۴ Email: javid207m@yahoo.com

Contents

Introduction	
Life in extreme cuvironments	
Microorganisms and saline habitats	<u>,</u>
Different strategies of halophilic adaptation	(
Hofmeister series and the effect of salt on protein solubility	.11
Effect of low-water environments on halophilic proteins	.1:
Insight halophilic protein adaptation	.10
Common salt-adaptation strategies of halophilic proteins and their a vino acid]
signature	.]{
Specific salt-adaptation of strategies	.20
Open and closed structure of ligase N from Hal = vax = \(\dagger \). \(nii \)	.20
Extra N-terminus domain of 2Fe-2S ferre loxi	.22
Charged clusters in <i>Hatoferax volcanii</i> dihye, ofo _{rate} reductase	.2:
Large aggregation formation in Halo he me thrix orenin α-Amylase	.24
Salt-dependent protein secre ion system	.24
Stability of proteins	.2f
Techniques for stabilizatio_of exyme	.28
Production of stable encyme by genetically modified organisms	.28
Protein engineetin, and modification of existing mesophilic enzymes	.28
Chemical it with area of enzymes	.29
Immol ^{-t} iza ion	.30
Ada, Sor. of additives	.32
Solubility of proteins	.3
Techniques for increasing solubility of proteins.	.3.
Addition of additives	
Fusion of soluble peptide tags	.35
Genetically modification of surficial residues	
Industrial potentials of halophilic proteins.	39

Halophilic amylase43
Production of neoagaro-oligosaccharides
Halophilic 3-galactosidase
Halophilic xylanase46
Halophilic lipase and esterase
Halophilic proteases
Bacteriorhodopsins, an optoelectronic protein49
Future perspective50
References

Introduction

Life in Extreme Environments

Life has been evolving in almost every niche on our planet. Recently some environments that previously were considered to be too violent to support life (e.g., high salinity, extraordinary pH and temperatures) have been discovered to embrace many forms of life. It is natural, however, to consider many of these so called extreme environments as unsuitable habitats for Homo sapiens. Microbial survival in these pt cluding and discordant habitats, however, needs special adaptation strategies. Organisms that thrive and live optimally in these habitats at referred to as extremophiles and polyextremophiles with or or so cral extreme factors, respectively (Dartnell, 2011). After the a co of extremophiles and based on the fact that the environments mey live in today are closely similar to that of the early shared blanet Earth around four billion years ago and somehow to ex reach estrial worlds (e.g., Mars and Europa); new research mode. for study of the origin of life and astrobiology developed (Rinaldi, 2007). Classification of extremophiles is based on extreme conditions in which they live. Table 1 includes some types of extremophiles and their habitats. This book reviews and discusses halophilic micro regarisms, their habitats and various strategies used by them for ada, 'at on of their proteins and the relevance of amino acid signature in the stability and activity of halophilic proteins in high salt concentrations. Also the effect of low-water environments and organic solvents on halophilic proteins will be considered.

Microorganisms and Saline Habitats

Environments with high salt concentration are among most extreme and strongly discordant habitats to support life. The interests in studying proteins, enzymes and intracellular biochemical processes of halophiles have been raised in many laboratories to understand their enigmatic strategies, by which they are capable to thrive, tolerate and colonized in such extreme habitats. Isolated enzymes and proteins from extremophiles, due to their extraordinary properties to work in such harsh conditions, are considered as useful catalysts for a variety of applications in biotechnology (Champdore, 2007). Divers types of living organisms in different saline environments can be either halotolerants or true halophiles. Halotolerant organisms are those that thrive in low salt habitats but also are able to tolerate partially high salt concentrations, while the halophile (salt-loving) organisms have a vital need of salt for their optimal grow h. Based on salt requirements, halophiles are classified in different groups. Slight halophiles optimally thrive at low salt concentrations (0.2-0.5 M), moderate halophiles prefer moderate salt concentrations (0.2-0.5 M) and extreme halophiles require more than 3 M s... (1 b) 2) for optimal growth (Joo. 2005).