

تشریح مسائل خواص سیالات مخارن هیدروکربوری

WILLIAM D.McCAULA

يرايش جديد

مهندس اشکا کبری برازجانی مهندس احکان سای مهندس ایمان حسا

: اکبری برازجانی، اشکان، ۱۳۶۷-سر شناسه

تشريح مسائل خواص سيالات مخازن هيدروكربوري أويليام مكين أا عنوان و نام پدیدآور

مولفان اشكان اكبرىبرازجاني، احسان حسني، ايمان حسني.

: تهران: ستایش، ۱۳۹۱. مشخصات نشر ۲۷۴ ص.: مصور، جدول. مشخصات ظاهري

، ۱۴۲۰۰۰ ريال: 578-600-5184 شابک

وضعيت فهرست نويسي

"properties of -petroleum fluids, 2nd ed The" كتاب حاضر راهنماي كتاب بادداثت

تاليف وپليام مكين است كه تحت عنوان "خواص سيالات مخازن هيد. وكربورى"

و عناوین دیگر به فارسی ترجمه شده است.

ویژگیهای سیالهای نفتی.

کاز طبیعی

ت -- مهندسی مخارن زیرزمینی

لت -- مهندسی مخازن زیرزمینی -- مسائل، تمرینها و غیره موضوع

> حینی، احسان، ۱۳۶۸ -شناسه افزوده

> ابِمان، ۱۳۶۶ -شناسه افزوده

یام، ۱۹۳۳ - م . ویژگیهای سیالهای نفتی شناسه افزوده TNAV-/4 .YY رده بندی کنگره

رده بندی دیویی

شماره کتابشناسی ملی

تهران ــ صندوق پستى: ٩٩٥–١٣١٤٥ تلفن: ٦٩٤٨٩٩٥ ٢٩١٢٠ (11) 11

تشريح مسائل خواص سيالات مخازن هيد

مؤلفان: مهندس اشكان اكبري برازجاني،

مهندس احسان حسني و مهندس ايمان حسنه

ناشر: انتشارات ستایش

نوبت چاپ: اول/۱۳۹۲

شمارگان: ۲۰۰۰ جلد

شایک: ۲-۵۳۸–۵۱۸۴ مارک: ۹۷۸

قىمت: ١٤٢٠٠٠ ريال

حق چاپ بر ای ناشر محفوظ است.

سخن ناشر

بنایش خداوند جان و جهان که بخشید لطف و کرم بی کران

به حول و قوهی الهی مؤسسه ی انتشارات ستایش با اهداف علمی و فرهنگی و کنوه کرده به مورد به ویژه ترویج کتاب کتاب انی اقدام به چاپ و انتشار کتاب کتاب کتاب بنی اقدام به چاپ و انتشار کتاب این این است بتوانیم روی م

لذا از خواند ن، حسل ، دیشمندان و صاحب نظران در زمینه همای گوناگون علمی، کامپیوتری، فنی و در دس مریزه مهندسی صنایع نفت دعوت می نماییم تا ما را در ارائه و گسترش اهداف در دنظر دری مایند.

شایان ذکر است جهت آگر عی ریا از آثار این انتشارات می توانید به سایت www.setayeshpress.com مراحب و در صورت تمایل به همکاری یا هر نوع انتقاد و پیشنهادی به نشانی پستالک پیکی www.setayeshpress @yahoo.com یا تهران صندوق پستی ۱۶۱۸–۱۳۴۴۵ مکاتبه نمایید طف شما مایه ی افتخار ماست.

فهرست مطالب

دمه
ه ۱ اخت اری
نمی های فصلی اول : اجزای سیالات نفتی
نمرین کی ہے و رفتار فازی
نمرینهای سال وم حادلههای حالت
نمرینهای فصل و دیر معالههای حالت برای گازهای حقیقی ۹۹
نمر بن های فصائل بنجه در برین در این در این
نمرینهای فصلل ششم: حصوصیا حراجا: حسک
نمرینهای فصل هفتم: و برخی های بی تی
نمرینهای فصل هشتم: ویزگیهای نفت سیاد ، ریف
نمرینهای فصل نهم: ویژگیهای نفت سنگین ـ اطارات ، انه برانیم
نمرینهای فصل دهم: ویزگیهای نفت سنگین ـ بررسی سی بر رخ سیسسسس ۱۷۷
مرینهای فصل یازدهم: ویژگیهای نفت سنگین ـ رابطهها ۱۹۳
مرینهای فصل دوازدهم: تعادل گاز _ مایع
هرينهاي فصل سيزدهم: جداسازي سطحي
مرینهای فصل چهاردهم: رابطههای نسبت تعادلی
مرینهای فصل بانزدهم: محاسبات تعادلی گاز _ مایع با استفاده از معادلههای حالت ۳۴۳
مرینهای فصل شانزدهم: خواص آب میادین نفتی
مر بن های فصیل هفدهم: هیدراتهای گازی

مقدمه

رس خواص سیالات مخازن هیدروکربوری از مهمترین دروس اصلی رشته ی مهندسی نفت است که می گریشهای این رشته ملزم به گذراندن این درس میباشند. با توجه به اینکه کتاب خواص بالات خازن هیدروکربوری - تألیف ویلیام مککین - یکی از منابح بی نظیر در مبحث خواص سیالات در در در مبحث خواص سیالات آزمون کارشناسی از د از مصلهای کتاب مذکور طرحمی شود، بر آن شدیسم تا با تشریح مسائل کتاب یادشده منبعی ماد در برا در نهای دانشگاهی و غیردانشگاهی مهیا کنیم.

هرچند در راه تألیب این ار که بی اولین بار در جهان منتشرمیگردد، پیهعنوان اولین تجریه، زحمات زیادی را متحمل شدیم. اما اصون طف و ردگار موفق شدیم و خدا را شاکریم.

شایسته است از اساتید و دوستان سز گرانقدر؛ آقایان دکتر سیروس قطبی، دکتر مسعود ریاضی، دکتر سعید جمشیدی، دکتر حمیدرضا می و برگا خانم دکتر ترانه جعفتری بهبهانی که در تألیف این کتاب همکاری نمودند تشکر و قدردانی نمایم، ه مین مراتب تشکر و قدودانی خود را از جناب آقای علی اکبر حائری، مدیر محترم انتشارات ستایش د نهایت می مدت را در انتشار این کتاب مبذول نمودند، ابراز می داریم.

لازم بهذکر است علی رغم نهایت دقت که در آماده سازی رسمار رفته است، کتاب حاضر نیز مانند دیگر آثار خالی از اشکال نیست، امیدواریم اساتید فن و مخاط برگر آمی با ارسال راهنمایی ها و بیشنهادهای خود به انتشارات ستایش ما را در جهت رفع نقایص احتمالی بر الری دهند.

با روز تر ب روزافزون

علائم اختصاري

a, b, c	constants in various equations of state
a,b,c,A_0,B_0	constants in Beattie-Bridgeman equation of sta
a, b, c, A ₀ ,	constants in Benedict-Webb-Rubin
B_0, C_0, α, γ	equation of state
$\mathfrak{a}_{\mathfrak{c}}$	PengRobinson equations of stat
a_T	temperature-dependent coepation in soave-edlichKwong and Peng-Poblic on equations of state
\mathbf{a}_{Ti}	temperature-dependent of no ent of compoment i
\mathbf{a}_{Tj}	temperature-de, nont conscient of component j
A	Avogadro's nume of molecules per molecular weight
A	cross-s vic al area
A	s in the light of carbon dioxide and hy loge, sulfide in Equation B -17
A, B, A', B	ce icients in various equations of state
A'j, B'j	oefficients for component j
A, E, E	coefficients in Beattie modification of BeattieBridgeman equation of state
AGP	additional gas produced, a parameter in res ervoir-gas specific gravity equation, defined by Equation 7-11
API, °API	liquid gravity in °API, defined by Equation 8-2
b_j	coefficient for component j in various equations of state
\mathbf{b}_{j}	plotting factor defined by equation 14-4

b_{O}	oil shrinkage factor, defined by Equation 8-4
В	mole fraction of hydrogen sulfide in Equation B-17
B, C,	virial coefficients
Bg	gas formation volume factor, specific to dry gas, defined by Equation 6-1
B_{O}	oil formation volume factor, defined by Equation 8-3
${ m B}_{ m Ob}$	oil formation volume factor at bubble-point
B_{OD}	see Table 10-3
$\mathrm{B}_{\mathrm{ODb}}$	see Table 10-3
${ m B}_{ m OSb}$	see Table 10-3
B_t	total (two-phase) formation volume it for, fined by Equation 8-6
\mathbf{B}_{tD}	see Table 10-3
B_{W}	water formation volume facto desend in Chapter 16
B_{Wb}	water formation volume to ctor at the bubble point of water
B_{Wg} .	wet-gas formage column factor, defined by Equation 7-12
$c_{ m g}$	gas coefficient of Lothermal compressibility, define by Equations 6-4
c_{O}	lig. 1 c enclient of isothermal compressibility, c fine y Equations 8-7 or Equation 8-24
c _{pr}	pseudoreduced coefficient of isothermal compressibility, defined by Equation 6-14
c_W	water coefficient of isothermal compressibility, defined by Equations 16-2 or Equation 16-3
С	constant of integration or constant of proportionality
$(CN)_{pb}$	defined by Equation B-38
(CN) _{Bob}	defined by Equation B-48
C_p	gas heat capacity at constant pressure

molar density $1/V_{\rm M}$

EXP(x)	equivalent to e ^x
f	fugacity, defined by Equation 15-3
$\mathbf{f_j}$	fugacity of component j, defined by Equation 15-18
f_g	fugacity of gas in equilibrium with liquid
f_{gj}	fugacity of component j of gas in equilibrium with liquid
$\mathrm{f}_{\mathtt{L}}$	fugacity of liquid in equilibrium with gas
$f_{L j}$	fugacity of component j of liquid in equil ibrium wit gas
FJ	factor in Stewart-Burkhardt-Voo equation defined by Equation B-9
G	chemical potential
G_{i}	chemical potential of complement
GPM	liquids content of gas, gallon. er wiscf
GPM_{j}	liquids content of con por ent j in gas, gallons per Mscf of gas
J	factor in Stewal 1 - Pardt-Voo equation, defined by Equation B-5
J′	factor in S_war t-Burkhart-Voo equati⊜n, defined by Equ → 3-3
K	e uiln m ratio, defined by Equation 1 2-14
K	y pr in Stewart-Burkhardt-Voo equati⊜n, defined by _quation B-6
K'	actor in Stewart-Burkhardt-Voo equation, defined by Equation B-4
K _i	equilibirum ratio of component j
K_{j}^{C}	calculated value of equilibrium ratio of component j
K_{i}^{T} .	trial value of equilibrium ratio of component j
ln	natural logarithm, base e
log	common logarithm, base 10
L	length

L_{c}	heating value (heat of combustion)
L_{ci}	heating value of component j
$L_{\rm v}$	■atent heat of vaporization
m	mass
m	⊂onstant in Soave-Redlich-Kwong and Peng- Robinson equations of state
m′	rnass of one molecule
m_R	rmass of reservoir gas
M	rmolecular weight
M_a	apparent molecular weight, defined 1/2qu to 3-35
M_{air}	apparent molecular weight of air
M_{C7+}	apparent molecular weight of lept. Ps plus fraction
$M_{ m g}$	apparent molecular world to the
$M_{\rm j}$	rmolecular weight of report j
$M_{ t L}$	apparent mole is weight of liquid in equilibrium vith gas
$M_{\rm O}$	apparent nolecular weight of liquid
M_{OR}	aippar is a plecular weight of reservoir liquid
M_{STO}	a par molecular weight of stock-tank liquid
n	ther of moles, total moles
n'	umber of molecules
n_g	n umber of moles of gas in equilibrium with liquid
$n_{\rm j}$	n umber of moles of component j
n_{L}	n umber of moles of liquid in equilibrium with gas
n_{Lf}	moles of liquid remaining at end of differential vaporization
n_{Li}	moles of liquid at start of differential vaporization
n_R	number of moles of reservoir gas

\bar{n}_{g}	fractional moles of gas, n _g /n
$\bar{n}_{g1},\bar{n}_{g2},$	fractional moles of gas formed in stages I, 2, of stage separation process
\bar{n}_{L}	fractional moles of liquid, n _L /n
$\bar{n}_{L1}, \bar{n}_{L2},$	fraction moles of liquid formed in stages I, 2, of stage separator process
P	pressure
ΔΡ	pressure change
Δpressure	P _{b corr} - P _{b Field} , Equation 11-8
P_b	bubble-point pressure
P _{b corr}	bubble-point pressure obtained for or elation
P _{b field}	bubble-point pressure obtain fro oduction data
P_c	critical pressure
P_{ci}	critical pressure of pine and it j
P_d	dew-point press
P_{j}	partial pressure of imponent j in gas mixture, defined at laptor 3
P_{K}	convigince pressure
P _{pc}	ാട Idochtical pressure, defined by Equation 3-42
P'pc	se Jocritical pressure adjusted for onhydrocarbon components, see Equation 3 -45
P _{pr}	pseudoreduced pressure, defined by Equation 3-43
P _r	reduced pressure, defined by Equation 3-41
P_{ri}	reduced pressure of component j
P_R	reservoir pressure
P_{sc}	pressure, standard conditions, see Table 6-1
P_{SP}	separator pressure

 P_{SP1}, P_{SP2}, \dots pressure of stages 1, 2, ... of stage separation process

P_{v}	vapor pressure
P_{vj}	vapor pressure of component j
P_{vr}	reduced vapor pressure, P_v/P_c
P	parachor in interfacial tension equations
$\mathbf{P_{i}}$	parachor for component j
r	electrical resistance
R	producing gas-oil ratio
R.	universal gas constant
R_s	solution gas-oil ratio (gas solubility in of Hefined by Equation 8-5
R_{sb}	solution gas-oil ratio at bubble o.
R_{sD}	see Table 10-3
R_{sDb}	see Table 10-3
R_{sSb}	see Table 10-3
R_{sw}	solution gas-water atio (gas solubility in water)
$R_{\mathbf{w}}$	water resistivity, offined by Equation 16-5
R_{SP}	separ or rou cing gas-oil ratio
R_{SP1} , R_{SP2} ,	pre typing jas-oil ratio from stages 1, 2, of stage s para in process
R _{ST}	k-tank producing gas-oil ratio
S	alinity of brine
T	temperature
ΔΤ	temperature change
T_{B}	temperature at normal boiling point
T_{Bj}	temperature at normal boiling point of component j
T_c	critical temperature
T_{cj}	critical temperature of component j
ΔT_{h}	reduction in hydrate-forming temperature

T_{pc}	pseudocritical temperature, defined by Equation 3–42
T´pc	pseudocritical temperature adjusted for

nonhydrocarbon components, see Equation 3 -44-

 $T_{\rm pr}$ pseudoreduced temperature, defined by Equation 3–43

 T_r reduced temperature, defined by Equation 3-41

 T_{ri} reduced temperature of component j

 T_{R} reservoir temperature

T_{se} temperature, standard conditions

 T_{SP} separator temperature

 T_{SP1}, T_{SP2}, \dots temperature of stages 1, 2, ... of ... e.s. ... atiom process

v molecular velocity

v specific volume

V volume

 $V_{\rm h}$ volume of liquid – the pubble point

VEO equivalent, is volume of stock-tank liquid, a parameter

in reser of a specific gravity equation, defined by

E uat. 🕆 '- 10

 $m V_i$ a lal volume of component j, defined in Chapter 3

 $V_{\rm M}$ holar volume, i.e., volume of one mole

 $V_{
m Mo}$ molar volume at the critical point

 $V_{
m Me}$ gas molar volume

 $m V_{ML}$ liquid molar volume

 V_0 liquid volume

 $m V_R$ gas volume. calculated at reservoir conditions

 V_{sc} gas volume calculated at standard conditions

 V_i total volume

$\left(rac{ extsf{V}_{ extsf{t}}}{ extsf{V}_{ extsf{b}}} ight)_{ extsf{F}}$	see Table 10-3
V_{w}	water volume
$\Delta m V_{wp}$	change in water volume during pressure reduction in $B_{\rm w}$ equation, Equation 16-1
$\Delta V_{_{\rm wT}}$	change in water volume during temperature reduction in B _w equation, Equation 16-1
W_{C1}	lb methane/lb mole mix (mole fraction times molecular weight of component)
W_{C2}	Ib ethane/Ib mole mix (mole fraction me molecular weight of component)
$ m W_{CO2}$	lb carbon dioxide/lb mole mix nr fraction times molecular weight of compent
W_{H2S}	lb hydrogen sulfide/lb 'e r (mole fraction times molecular weight a component)
\mathbf{w}_{mix}	ib mix/ib mo. m (mlar weight of total mixture)
w _{N2}	Ib nitrogra/Ib me mix (mole fraction times molecular veid at of component)
\mathbf{w}_{j}	wrigh to jon of component j
W	i piste content, Equation B-76
· W	ght percent solute, Equation B-89
W_1	veight fraction of methane in mixture, defined by Equation 11-1, used as percent in Figure 11-6
W_2	weight fraction of ethane in ethane and heavier, defined by Equation 11-2, used as percent in Figure 11-6
$\mathbf{x_{i}}$	mole fraction of component j in liquid
$\mathbf{x_{ji}}$	mole fraction of component j in liquid at initial conditions
x_{jf}	mole fraction of component j in liquid at final conditions
y_{j}	mole fraction of component j in gas

Y	condensate volume
Z	compressibility factor (z=pV/nRT), defined by Equation 3-40
z_c	compressibility factor at critical point
Z_g	compressibility factor of gas ($Zg = pV_{Mg}/RT$)
\mathbf{z}_{j}	mole fraction of component j in total mixture
z_L	compressibility factor of liquid ($Z_L = pV_{ML}/RT$)
z_{sc}	gas compressibility factor at standard conditions
Greek α	temperature-dependent coefficient in Soave- RelichKwong and Peng-Robinson equations of sta
$\alpha_{\rm j}$	temperature-dependent coefficient comment ji
В	coefficient of isobaric thermal e partio raefined by Equation 8-25
γ _{C7+}	specific gravity of heptaces-p s fraction, defined as for liquid
$\gamma_{\rm g}$	gas specific gravitation den
γ_{gR}	reservoir gas specific gravity
γ_{gSP}	separt or its specific gravity
γ_{gSP1}	f st-2 e separator gas specific gravity
γ_{gSP2}	nd-stage separator gas specific gravity
γ_{gST}	tock-tank gas specific gravity
γ_{0}	liquid specific gravity, defined by Equation 8 -1
γ_{o_j}	specific gravity of component j of a liquid
$\gamma_{ m STO}$	stock-tank oil specific gravity
$\gamma_{\rm w}$	water (brine) specific gravity, defined in Chapter 116
δ_{ij}	binary interaction coefficient in Soave-Redlich- Kwong and Peng-Robinson equations of state

Δ	indicates difference
ε	pseudocritical temperature adjustment factor for nonhydrocarbon components, Equations 3-44 and 3-45
$\boldsymbol{\epsilon_{j}}$	error function of component j, Chapter 15
$\epsilon_{_{J}}$	factor in Stewart-Burkhardt-Voo equation, defined by Equation B-7
$\epsilon_{\rm K}$	factor in Stewart-Burkhardt-Voo equation, define by Equation B-8
μ	dynamic viscosity
μ_{g}	gas viscosity (dynamic)
μ_{gi}	gas viscosity of component j
μ_{gl}	gas viscosity (dynamic) at a nost he ic pressure
μ.	oil viscosity (dynamic
$\mu_{\circ b}$	oil viscosity (manic, hoble-point pressure
$\mu_{\circ D}$	oil viscosity (dynamic, at atmospheric pressure (dead oil
$\mu_{\mathbf{w}}$	water . a lity (dynamic)
μ_{w1}	tater cosity (dynamic) at atmospheric pressure
ν	matic viscosity, defined by Equation 6-15
$\rho_{\rm a}$	pparent liquid density of solution gas
$\rho_{a,Cl}$	apparent liquid density of methane
$\rho_{a,C2}$	apparent liquid density of ethane
ρ_{bs}	liquid density at reservoir pressure and 60°F
$\rho_{\text{C3+}}$	density of propane and heavier part of mixture
ρ_{g}	density of gas
ρ_{gc}	density of gas at its critical point

$\Delta \rho_{\text{H2S}}$	adjustment to liquid density due to hydrogen sulfide content
ρ_{L}	density of liquid in equilibrium with gas
ρ့	density of liquid
$\rho_{:_J}$	density of component j as a liquid at standard conditions
$\rho_{\circ b}$	density of liquid at bubble-point conditions
$ ho_{\circ R}$	density of reservoir liquid at reservoir condition
$\Delta \rho_b$	adjustment to liquid density due to preserve
ρ_{Po}	density of pseudo liquid
ρ_{pr}	pseudoreduced gas density def er Equation B-18, B-II
ρ_{STO}	density of stock-tank an standard conditions
$\Delta \rho_{\scriptscriptstyle T}$	adjustment to liq d a size due to temperature
$\rho_{\rm w}$	density of water ring
σ	interfacia l'ension
σ_{gw}	ga va er terfacial tension
ϕ_j	ficacity coefficient of component j, defined by ation 15-21
ϕ_{gj}	ugacity coefficient of component j in gas
ϕ_{Lj}	fugacity coefficient of component j in liquid
ω	acentric factor
ω_{j}	acentric factor of component j
$\Omega_{_a}$	constant in equation of state, 0.45724 in PengRobinson equation, 0.42747 in Soave-RedlichKwong
$\Omega_{ t b}$	constant in equation of state, 0.07780 in PengRobinson equation, 0.08664 in Soave-RedlichKwong equation

Subscripts apparent, also used with $\Omega_{\rm a}$, to indicate constant

a in a_c equation

Actual actual (as in real gas)

Air air

A, B, C different chemical species, different components of

a mixture

A argon

 ${f b}$ bubble point, also used with $\Omega_{f b}$ to indicate consent

in b equation

B boiling point

c critical, also used with L_c to represent consistion

corr value of property obtained of me relation

C1, C2, C3, methane, ethane, pror ...

C3+ property of picture :-piction of the petroleum

mixture

C7+ property the he, lanes-plus fraction of the

petrol m lixture

CO2 cr bu coxide

C+ recently of the plus fraction of the petroleum mixture

d ew point

dry dry, with L_c to indicate no water vapor prior to

combustion

property measured in a differential vaporization

(see Table 10-3) also used for dead oil

f final value or final conditions

Field value of property obtained from production history

property measured in a flash vaporization, see

Table 10-3

g gas

gl	gas at atmospheric pressure
H2S	hydrogen sulfide
i	initial value or initial conditions or different components of a mixture
ideal	property of an ideal gas or ideal gas mixture
ij	i and j represent different components of a mixture
ijK	i, j, and k represent different components of a pixt
j	different components of a mixture
jf	j represents different components of a mixture, f
	represents final value or final condit s
ji	j represents different componer of a sucure, i
	represents initial value or initial controls
L	liquid, usually in the context of the adulibrium
	with a gas
mix	total mixture
M	molar
N2	nitrogen
O	oil or line
O2	ć vge
p	sure (in the context of constant pressure in Cp) or pressure dependent
pc	pseudocritical
po	pseudoliquid
pr	pseudoreduced
r	reduced
R	reservoir (used only when necessary to distinguish
	between quantities in same calculation, such as $ ho_{sto}$ and $ ho_{sto}$)
e	solution (gas in oil)
S	solution (Bus III OII)

sc standard conditions

sw solution (gas in water)

S property measured in a separator test, see Table 10-3

SP separator

SP1 first-stage separator

SP2 second-stage separator

ST stock tank

STO stock-tank oil (used only when necessary to disting. h

between quantities in same calculation, such as

 ρ_{oR} and $\rho_{\text{STO}})$

total or two phase

T temperature or temperature lepino int

v used in p_v to indicate variet pussure and L_v to

indicate vaporization

w water (oilfield rin)

wet wet, with L_c to in tate saturated with water vapor

prior to combustion

wg wet ga

1, 2, 3, ... il enu primarily to indicate different conditions

ressure and temperature, also used to indicate

tases of separation

Supers calculated value

C

T trial value

Abbreviations angstrom unit (10⁻⁸ cm)

A

AGP additional gas produced, a parameter in reservoir-

gas specific gravity equation

^oAPI degree (American Petroleum Institute)

atm atmosphere

bbl barrel

bbl/d barrels per day

BTU British thermal unit

cc cubic centimeter

cm centimeter

cp centipoise

cu cubic

cu ft cubic foot

cu ft/d cubic feet per day

cu ft/lb cubic feet per pound

cu ft res gas cubic feet of reservoir gas por id it reservoir

conditions

cu ft STO cubic feet of stock-ta k li juid reported at standard

conditions

cu m cubic meter

C indicates critical int on diagram

C1, C2,... methane, thane, ... subscript indicates number of

ca hollar is

C2+ hank and heavier fraction of mixture

C3+ pane and heavier fraction of mixture

C7+ heptanes and heavier fraction of mixture

d day

diff differential vaporization

eq wt equivalent weight

ft foot

ft-lb foot-pound

°F degrees Fahrenheit

g gram

grams per cubic centimeter g/cc gallons gal gram mole g mole grain gr gas-oil ratio GOR gallons per Mscf **GPM** horsepower hour hp-hr mercury Hg inch in inches of mercury in Hg kilograms per square centimete kg/sq cm kilogram mole K mole kilo pascal k Pa Kelvins K kilowatt hour KW-hr liter 1 pound lb pr in a reubic foot lb/cu ft ocids per gallon 1b/gal ound mole lb mole pounds per square inch lb/sq in pounds per square foot lb/sq 1

limit
liquid
natural logarithm (base e)
common logarithm (base 10)
meter
milliequivalent weight

lim

liq

ln

log

meg

m

mg milligram

Microsip psi⁻¹ X 10⁶

ml milliliter

mm millimeter

mm Hg millimeters of mercury

mol wt molecular weight

MMscf million standard cubic feet

MMSTB million stock-tank barrels

Mscf thousand standard cubic feet

Mscf/d thousand standard cubic feet per day

MSTB thousand stock-tank barrels

MSTB/d thousand stock-tank barre per av

oz/sq in ounce per square inch

ppm parts per million

psi pounds per squinch

psia pounds per squa inch absolute

psig pounds persquire inch gauge

res re rv ir

res cu ft bic t of reservoir gas reported at reservoir

rc ditions

res bbl barrels of reservoir liquid or gas (or both) reported

at reservoir conditions

OR degrees Rankin

scf standard cubic feet, volume of gas reported at

standard conditions

scf/STB standard cubic feet of gas per barrel of stock-tank

liquid

sec second

Sip Psi⁻¹

sp. gr. specific gravity

sq square

sq cm square centimeter

sq ft square foot

sq in square inch

SP separator

SP bbl barrels of separator liquid

ST stock tank

STB barrels of stock-tank oil (stock-tank barrel) repo

at standard conditions, also used for barrels of

water at standard conditions

STB/d stock-tank barrels per day

STO stock-tank oil

vs versus

VEQ equivalent gas volume of too tank liquid, a

parameter in reservoi gar specific gravity

equations

wt weight